Chemical Reactions

The process by which the atoms of one or more substances are rearranged to form different substances is called a chemical reaction. For example, when the methane in natural gas combines with oxygen in the air and burns, carbon dioxide and water are formed. This process is represented by a chemical equation with the reactants (methane and oxygen) on the left side of an arrow and the products (carbon dioxide and water) on the right side:

$$
\begin{array}{cc}
\mathrm{CH}_{4}+\mathrm{O}_{2} & \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { Reactants } & \text { Products }
\end{array}
$$

Notice that the atoms have been reorganized. Bonds have been broken, and new ones have been formed.

It is important to recognize that in a chemical reaction, all atoms present in the reactants must be accounted for in the products. Making sure that this rule is obeyed is called balancing a chemical equation for a reaction.

The equation for the combustion of methane (above) is not balanced. We can see this from the following representation of the reaction:

There are 2 oxygen atoms and 4 hydrogen atoms on the left of the arrow, but 3 oxygen atoms and 2 hydrogen atoms on the right. According to the rule above, the number of atoms of each element must be the same on both sides of the arrow. Through simple trial and error we can determine that the needed numbers of molecules are:

We can represent this situation by the following chemical equation:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

We can verify that the equation is balanced by counting the number of atoms of each element on both sides.

Reactants		Products
	C	
	H	
	O	

The Meaning of a Chemical Equation

The chemical equation for a reaction gives two important types of information: the nature of the reactants and products, and the relative numbers of each.

Besides specifying the compounds involved in the reaction, the equation often gives the physical states of the reactants and products:

State	Symbol
Solid	(s)
Liquid	(l)
Gas	(g)
Dissolved in water (in aqueous solution)	$(a q)$

For example:

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(\mathrm{aq})
$$

The relative numbers of reactants and products in a reaction are indicated by the coefficients in the balanced equation. For example, the balanced equation

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

can be interpreted in several equivalent ways, as shown below.

Reactants		Products
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
1 molecule $\mathrm{CH}_{4}+2$ molecules O_{2}	\rightarrow	1 molecule $\mathrm{CO}_{2}+2$ molecules $\mathrm{H}_{2} \mathrm{O}$
1 mole $\mathrm{CH}_{4}+2$ moles O_{2}	\rightarrow	1 mole $\mathrm{CO}_{2}+2$ moles $\mathrm{H}_{2} \mathrm{O}$
6.02×10^{23} molecules CH_{4}	\rightarrow	6.02×10^{23} molecules CO_{2}
$+2\left(6.02 \times 10^{23}\right)$ molecules O_{2}	$\rightarrow 2\left(6.02 \times 10^{23}\right)$ molecules $\mathrm{H}_{2} \mathrm{O}$	
$16 \mathrm{~g} \mathrm{CH}+2(32 \mathrm{~g}) \mathrm{O}_{2}$	\rightarrow	44 g CO
2		

Note that the total mass is 80 g for both reactants and products. Per the law of conservation of mass, the mass remains constant throughout the reaction.

Balancing Chemical Equations

The principle that is the heart of balancing is that the same number of each type of atom must be found among the reactants and the products. It is also important to remember that the formulas of the compounds must never be changed in balancing a chemical equation. In other words, the subscripts in a formula cannot be changed.

Most chemical equations can be balanced by following the steps given below.

1. Write the unbalanced equation for the reaction.

- show the physical states of all reactants and products whenever possible

2. Count the atoms of the elements in the reactants.

- if a reaction involves identical polyatomic ions in the reactants and products, count the ions as if they were elements

3. Count the atoms of the elements in the products.
4. Change the coefficients to make the number of atoms of each element equal on both sides of the equation.

- never change a subscript of a formula, since doing so changes the identity of the substance
- change coefficients one at a time, and recount the elements after every change

5. Write the coefficients in their lowest possible ratio.

- think of this like reducing a fraction

6. Check your work.

- make sure the chemical formulas are written correctly
- check that the number of atoms of each element is equal on both sides of the equation

Example 1

Write the balanced chemical equation for the reaction in which hydrogen gas and chlorine gas react to produce hydrogen chloride.

Example 2

Write the balanced chemical equation for the reaction in which sodium hydroxide and calcium bromide react to produce solid calcium hydroxide and sodium bromide. The reaction occurs in water.

Example 3

Write the balanced chemical equation for the reaction in which methane gas reacts with oxygen gas to produce carbon dioxide gas and water vapor.

Example 4

Write the balanced chemical equation for the reaction in which solid magnesium reacts with nitric acid $\left(\mathrm{HNO}_{3}\right)$ to produce hydrogen gas and magnesium nitrate. The reaction occurs in water.

Worksheet

1. What is the purpose of writing a word equation?
2. Examine the following word equation:

$$
\text { propane }+ \text { oxygen gas } \rightarrow \text { carbon dioxide }+ \text { water }
$$

a) List all the reactants in this reaction.
b) List all the products in this reaction.
c) What is the purpose of the arrow in the word equation?
3. Write word equations for the following reactions:
a) CaCl_{2} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ react to form CaSO_{4} and NaCl .
b) BaCO_{3} reacts when heated to produce BaO and CO_{2}.
c) AgNO_{3} reacts with KCl to produce AgCl and KNO_{3}.
4. Write word equations to represent the following chemical reactions:
a) Carbon dioxide and water are produced in human cell respiration. The reactants are sugar and an important gas that humans need to survive.
b) Stalactites form in caves when calcium bicarbonate reacts to form calcium carbonate, water, and carbon dioxide gas.
5. Write your own word equation for the production of a peanut butter sandwich.
6.
a) Why is the following equation not balanced?

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}
$$

b) The following is an attempt to balance the above equation. What is wrong with the way that the equation is balanced?

$$
\mathrm{N}_{2}+\mathrm{H}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{3}
$$

7. Copy the following skeleton equation into your notebook. Then balance the equations.
a) $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
b) $\mathrm{K}+\mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{O}$
c) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
e) $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
f) $\mathrm{CO}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
g) $\mathrm{Al}+\mathrm{Br} r_{2} \rightarrow A l B r_{3}$
h) $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
i) $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
8. For each of the following, write the correct skeleton equation, and then balance it to form a chemical equation.
a) copper(II) oxide + hydrogen \rightarrow copper + water
b) lead(II) nitrate + potassium iodide \rightarrow lead(II) iodide + potassium nitrate
c) calcium + water \rightarrow calcium hydroxide + hydrogen gas
d) lead(II) sulfide + oxygen \rightarrow lead + sulfur dioxide
e) hydrogen sulfide \rightarrow hydrogen + sulfur
9. Imagine that you are an engineer trying to determine how much air had to be supplied to burn gasoline in a car engine. Assuming that gasoline is heptane ($\mathrm{C}_{7} \mathrm{H}_{16}$), the word equation is:

$$
\text { heptane }+ \text { oxygen } \rightarrow \text { carbon dioxide }+ \text { water vapor }
$$

a) Write the skeleton equation for the reaction.
b) Balance the equation by adding coefficients as necessary.
c) How many molecules of oxygen are required for every molecule of heptane that burns?

